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We consider the flow of instantaneous releases of a finite volume of viscous fluid in a
narrow vertical fracture or Hele-Shaw cell, when there is a still narrower vertical crack
in the horizontal base of the cell. The predominant motion is over the horizontal
surface, but fluid also drains through the crack, progressively diminishing the volume
of the current in the fracture. When the crack is shallow on the scale of the current,
it saturates immediately with the draining fluid. In this case, we obtain an exact
analytical solution for the motion. When the crack is deeper and does not saturate
immediately, we calculate numerically the motion of the fluid in both the fracture
and the crack. In each case the current advances to a finite run-out length and then
retreats: we describe both phases of the motion and characterize the run-out length
in terms of the controlling parameters.

1. Introduction
A common technique to increase the productivity of natural gas reservoirs involves

opening a vertical fracture in the reservoir by pumping in a particle-laden slurry at
high pressure: when pumping stops, the solid particles (‘proppants’) hold the fracture
open to provide a high-permeability pathway. The dynamics of this process are rather
complex, and numerical simulations must incorporate a non-Newtonian slurry rhe-
ology, infiltration through the walls of the fracture, and the settling and migration of
proppants (Pearson 1994), in addition to the solid mechanics of the fracturing process.
However, in recent years it has been acknowledged that there is also a role for ana-
lytical investigation of several fluid dynamical aspects of the process to complement
the well-established numerical and experimental studies (Hammond 1995).

One such aspect is the spreading of injectate into a fracture which is already open,
and is occupied either by some native fluid or by old slurry from which the majority of
proppant particles have settled out. The injectate is generally denser than the ambient
fluid and highly viscous: hence it will tend to spread along the base of the fracture,
under a balance between gravitational and viscous forces. Similar viscous–gravity
currents have been studied in a variety of contexts (see, for example, Huppert 1982;
Didden & Maxworthy 1982; Huppert 1986; Davis & Hocking 1999, 2000).

If the fracture has a pervious rather than an impermeable base, the intruding fluid
may leak slowly through it, limiting how far and how fast the current spreads. A
similar phenomenon has been described by Acton, Huppert & Worster (2001), who
considered currents spreading over a deep, porous horizontal surface, into which they
drain. They found that when a finite volume of fluid is instantaneously released, the
current initially advances, driven by the density difference between the intruding and
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Figure 1. Definition diagram for a draining viscous–gravity current in a thin fracture: (a) plan
view; (b) vertical cross-section. The ‘fracture’ corresponds to z > 0 and the ‘crack’ to z < 0.

ambient fluids, but that at large times drainage becomes dominant, and the current
retreats before entirely draining into the underlying layer.

As a prototype for the injection of slurry into such a ‘leaky’ fracture, we consider
the propagation of viscous fluid in a uniform vertical fracture with a thinner crack,
of uniform width, in the base. The crack in turn overlies a deep region of high
permeability, which is not explicitly represented in our model. We model the flow using
a lubrication approximation, which yields a single nonlinear diffusion equation for the
fluid depth: it is interesting to note that this equation also describes two-dimensional
flow in a porous medium, and a second application of our model is to these flows,
which have been considered by Huppert (1986) and subsequent studies (e.g. Woods &
Mason 2000). In particular, Pritchard, Woods & Hogg (2001) investigated models of
porous flow which incorporate a simplified drainage term: the current paper extends
this work to regimes in which this simplified term is no longer appropriate, and the
flows in both the fracture and the crack must be considered in more detail.

In § 2, we construct a model for flow in both the upper fracture and the underlying
crack. We then consider two regimes. In the first regime (§ 3), the crack is sufficiently
shallow that it saturates immediately as the current passes over it, while in the second
(§ 4), the crack is presumed to be sufficiently deep that it never fully saturates and the
evolving saturated region must be considered in more detail.

2. Derivation of the governing equations
The geometry of the flow is shown in figure 1. We consider an intrusion of density

ρ + ∆ρ and viscosity µ into an ambient of density ρ and viscosity µa < µ. The
z-coordinate is vertical and the y-coordinate is horizontal and perpendicular to the
along-fracture coordinate x. The width of the fracture is W , and the width of the
underlying crack is W1 < W . The velocity in the fracture in the x-direction is denoted
by u, and the fluid drains through the base of the fracture with a volume rate per unit
area −v. The length of the current is denoted by L(t), and the saturated region of
the underlying crack is given by −h2(x, t) < z < 0. Both the fracture and the region
underlying the crack are presumed to be deep, so return flows may be neglected.



Draining viscous gravity currents in a vertical fracture 209

2.1. Flow in the fracture

We assume that W is much less than the characteristic depth H of the current, which
is itself much less than the length of the current, W � H � L. The pressure can then
be shown to be hydrostatic, p = p0 + ρg(H0 − h) + (ρ+ ∆ρ)g(h− z), where H0 and p0

are a reference depth and pressure respectively; and the shear of the velocity field in
the y-direction is then much greater than the shear in the z-direction. The pressure
in the ambient fluid, which initially extends throughout z < 0 as well as z > 0, is also
hydrostatic, pa = p0 + ρg(H0 − z).

Close to the nose of the current x = L(t), the effects of surface tension must be
included to obtain a formally accurate description of the current (Hocking 1983): this
is particularly important in geometries in which the gradient of the current is infinite
at the nose (such as those considered by Huppert 1982). However, the correction
terms are generally small and do not affect the global dynamics of the current: we
therefore neglect capillary forces throughout this study.

If the Reynolds number is much less than unity, ρUH/µ� 1 where U is a typical
velocity in the current, the motion is governed by a balance between the streamwise
pressure gradient and the lateral gradient of the viscous stresses,

∂p

∂x
= µ

∂

∂y

(
∂u

∂y

)
, (2.1)

with the no-slip boundary condition u = 0 on y = 0 and, by symmetry, ∂u/∂y = 0 on
y = W/2. The appropriate solution in 0 6 y 6W/2 is

u(x, y, t) = −1

2

(
g∆ρ

µ

)
∂h

∂x

[(
W

2

)2

−
(
W

2
− y
)2
]
, (2.2)

and we substitute this into the mass conservation equation

∂h

∂t
+

∂

∂x

[∫ h

0

2

W

(∫ W/2

0

u dy

)
dz

]
= v, (2.3)

to obtain

∂h

∂t
= β

∂

∂x

[
h
∂h

∂x

]
+ v, where β =

W 2

12

(
g∆ρ

µ

)
. (2.4)

For an instantaneous finite release of fluid, we require that the mass flux is zero at
the tail of the current, and thus ∂h/∂x = 0 at x = 0.

2.2. Flow in the crack: drainage term

We consider two regimes: the first applies if the crack is sufficiently shallow that it
saturates immediately with fluid as the current passes over it; and the second applies
if the crack is deep, and the extent of the saturated region must be considered.

The derivation of the drainage term is slightly simpler in the first regime. We
consider a crack of depth b: for purely vertical flow, conservation of mass requires
that ∂2p/∂z2 = 0, and therefore that the pressure gradient in the crack is given by

∂p

∂z
= g

[
∆ρ
h

b
− ρ
]
, (2.5)



210 D. Pritchard and A. J. Hogg

leading to the balance of forces

µ
∂

∂y

(
∂w

∂y

)
= −g(ρ+ ∆ρ)− ∂p

∂z
= g∆ρ

(
h

b
+ 1

)
, (2.6)

where w is the vertical velocity in the crack. Integrating with respect to y we obtain

w(x, y, t) =
1

2

(
g∆ρ

µ

)(
h

b
+ 1

)[(
W1

2
− y
)2

−
(
W1

2

)2
]
. (2.7)

This drainage term will provide a leading-order description of the flow in the crack
as long as the vertical drainage velocity w is much greater than the horizontal velocity
in the crack u1 which is driven by the horizontal pressure gradient imposed on z = 0.
Equation (2.2) indicates that we may expect terms associated with u1 to scale as

u1 ∼
(
g∆ρ

µ

)
W 2

1

∣∣∣∣∂h∂x
∣∣∣∣ , (2.8)

and so the condition w � u1 is automatically satisfied if H/L� 1.
We also require that in the fracture itself, the vertical velocities associated with the

drainage are much smaller than the horizontal velocities driven by the hydrostatic
pressure gradient, w � u. Thus for the description to be consistent, we must have
W 2

1 /W
2 � H/L � 1. If these conditions are satisifed, flow in the fracture will be

horizontal to leading order and flow in the crack will be vertical to leading order.
The mass loss term v is now given by averaging across the width of the crack,

v = − 1

12

(
g∆ρ

µ

)
W 3

1

W

(
1 +

h

b

)
. (2.9)

We may also now quantify the regime in which this form of the drainage term is
valid: we require that the timescale associated with motion in the upper layer is much
greater than the timescale for drainage through the crack, and thus that L/β � b/v,
which is satisfied if L/b�W 3/W 3

1 .
In the second regime, the crack is sufficiently deep that it does not saturate

instananeously with fluid (i.e. (L/b)(W1/W )3 = O(1) or smaller), and the derivation
is very similar, except that the boundary conditions on pressure are applied at z = 0
and at z = −h2(x, t), the lower surface of the saturated region of the crack. Thus, the
pressure gradient becomes

∂p

∂z
= g

[
∆ρ

h

h2

− ρ
]
, (2.10)

and proceeding as before we obtain the drainage term

v = − 1

12

(
g∆ρ

µ

)
W 3

1

W

(
1 +

h

h2

)
. (2.11)

We must also consider the evolution of the saturated region, which for purely
vertical flow is given simply by the conservation of fluid mass,

∂h2

∂t
= −W

W1

v =
W 2

1

12

(
g∆ρ

µ

)(
1 +

h

b

)
. (2.12)

2.3. The stability of the lower interface

The interface at z = −h2 may be subject to a gravitational instability if the denser
and more viscous overlying fluid descends too slowly. Neglecting surface tension, the



Draining viscous gravity currents in a vertical fracture 211

criterion for this instability to be suppressed is

W 2
1

12
g∆ρ < (µ− µa)∂h2

∂t
(2.13)

(Saffman & Taylor 1958). Substituting for ∂h2/∂t using equation (2.12) yields

h

h2

>
µa

µ− µa . (2.14)

For a highly viscous slurry propagating into a less viscous ambient, µa/µ � 1, so
while h/h2 & µa/µ, the interface remains stable and the derivation of the drainage
term is consistent.

2.4. Non-dimensionalization

For a finite instantaneous release of dense fluid, with volume V (t) and initial volume
V per unit width of the fracture, we define the dimensionless variables

ĥ =
h

V1/2
, ĥ2 =

h2

V1/2
, x̂ =

x

V1/2
, t̂ =

β

V1/2
t, v̂ =

v

β
, (2.15)

to obtain the scaled governing equation

∂ĥ

∂t̂
=

∂

∂x̂

[
ĥ
∂ĥ

∂x̂

]
+ v̂. (2.16)

The boundary conditions are given by

∂ĥ

∂x̂
= 0 at x̂ = 0, ĥ = 0 at x̂ = L̂(t̂), (2.17)

and the initial dimensionless volume V̂ (0) = 1.

For a shallow crack, the drainage term becomes v̂ = −λĥ− ε, where

ε =
1

12

(
g∆ρ

βµ

)
W 3

1

W
=
W 3

1

W 3
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V1/2

b
ε. (2.18)

For a deep crack, the governing equations become

∂ĥ

∂t̂
=

∂

∂x̂

[
ĥ

(
∂ĥ
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)]
− λ1

(
ĥ
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)
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(
ĥ
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)
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where

λ1 =
1

12

(
g∆ρ

βµ

)
W 3

1

W
=
W 3

1

W 3
and λ2 =

W 2
1

W 2
. (2.20)

We note at this point that the system we have described is analagous to flow in
a porous medium over a horizontal layer of lower permeability, while the drainage
terms have the same non-dimensional form as those derived by Acton et al. (2001)
for drainage into a porous layer. The permeabilities in the upper and lower layers
correspond to K ≡W 2/12 and K1 ≡W 2

1 /12, while the ratio of the effective porosities
of the upper and lower layers is given by φ/φ1 ≡W/W1. Thus the results described
here may be interpreted as an extension of the model for flow in porous media
discussed by Pritchard et al. (2001).
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2.5. Similarity solutions for a non-draining current

For a current which propagates over an impermeable base, and so does not lose mass
by drainage, equation (2.4) admits a similarity solution (Pattle 1959),

ĥ(x̂, t̂) = 1
6
t̂−1/3

(
92/3 − x̂2

t̂2/3

)
. (2.21)

This has been confirmed experimentally (Huppert 1986; Huppert & Woods 1995;
Woods & Mason 2000) to provide a good description of the flow of a viscous liquid
in a Hele-Shaw cell. Pritchard et al. (2001) investigated numerically the convergence
to this solution for a non-singular initial release, and confirmed that it is rapidly
attracting for a range of initial conditions.

3. Drainage through a shallow crack

We recall that the drainage term in this case has the form v̂ = −λĥ − ε. We

can further rescale the equation, defining h∗ = λ−1/3ĥ, t∗ = λt̂, x∗ = λ1/3x̂ and
ε∗ = ελ−4/3 = (W/W1)(b/V1/2)4/3, to eliminate λ from both the equation and the
initial condition on volume, and obtain

∂h∗

∂t∗
=

∂

∂x∗

(
h∗
∂h∗

∂x∗

)
− h∗ − ε∗. (3.1)

We recall that the regime required for this description to be valid is L/b� (W/W1)
3,

and this may be rewritten as ε∗ � b/V1/2; we are therefore concerned only with
small values of ε∗. However, we shall see that even small values of ε∗ > 0 can make
a qualitative difference to the behaviour of the current.

We approach this problem by seeking a solution of the form

h∗(x∗, t∗) = exp (−t∗) 1
6
τ∗−1/3

(
92/3 − x∗2

τ∗2/3

)
+ ε∗h∗1(x

∗, t∗), (3.2)

where the leading-order term corresponds to the solution for pressure-driven drainage
obtained by Pritchard et al. (2001), and where τ∗ = 1 − e−t∗ . We employ the ansatz
h∗1 = h∗1(t∗), under which all spatial dependence in equation (3.1) vanishes, and we
obtain an ordinary differential equation for h∗1(t∗). The initial condition is h∗1(0) = 0,
because as t∗ → 0, h∗ → ∞, and so the term −h∗ dominates the term −1 in the
drainage flow v∗ and the problem reduces to that of purely ‘pressure-driven’ drainage,
described by the leading-order term.

We obtain the solution

h∗1(t
∗) =

(e−t∗ − 1)2/3

et∗ − 1

∫ t∗

0

eu(e−u − 1)1/3 du, (3.3)

which can be expressed in closed form as

h∗1(τ) = −1− 1− τ∗
τ∗1/3

[
log

(
(1− τ∗1/3)1/2

(1− τ∗)1/6

)
− 1√

3
tan−1

(
1 + 2τ∗1/3√

3

)
+

π

6
√

3

]
. (3.4)

We note that in the regime (1 − τ∗) � 0, h∗1(t∗) ∼ −1 + O((1 − τ∗) log (1− τ∗)), and
thus h∗1(t∗)→ −1 as t∗ → ∞, so the perturbation term is smaller than ε∗ for all time.

An interesting feature of this solution is that, as for the solutions presented by
Pritchard et al. (2001), the parabolic shape of the current is preserved: in fact,
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Figure 2. The length L∗(t∗) and volume V ∗(t∗) of draining currents with ε∗ = 0.1 (—) and ε∗ = 0
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regardless of the form of h∗1(t∗), we find the length of the current

L∗(t∗) = (1− e−t
∗
)1/3
√

92/3 + 6ε∗et∗(1− e−t∗)1/3h∗1(t∗), (3.5)

and then, defining ζ = x∗/L∗(t∗), we may write h∗(x∗, t∗) = h∗(0, t∗)(1− ζ2).
In figure 2, we plot the length and volume of the draining current as a function of

time for the cases ε∗ = 0.1 and ε∗ = 0. The main difference between the two results is
the behaviour of length as a function of time: instead of asymptotically approaching
a maximum run-out length, the current now retreats and drains out entirely in a finite
time. The perturbation term corresponds to only a minor difference in the volume
of the current; however, the length of the current is considerably reduced because
drainage is always significant near its nose.

Figure 3 shows how the run-out length varies with ε∗. It is apparent that the
component of drainage driven by the fluid weight significantly affects the flow even
for small values of ε∗. It can be shown that for ε∗ � 1, the rescaled time τ∗max at which
the current reaches its maximum length is given by τ∗max = 1−31/3ε∗1/2 + · · ·, and thus
Lmax = 91/3 − 2ε∗1/2 + · · · as ε∗ → 0. Hence, the solutions obtained by Pritchard et al.
(2001) somewhat overestimate the run-out length of the current: this is in accordance
with the experimental results presented in that earlier study.
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4. Drainage into a deep crack
We now consider the propagation of a current when the narrow drainage crack is

deep on the scale of the current, and so never fully saturates. In order to investigate
the instantaneous release of a finite volume of fluid, it is necessary to integrate the
equations numerically, using an adaptive-grid method.

We can reduce the number of parameters in equations (2.19) by defining ĥ = λ
1/4
1 h∗,

ĥ2 = λ
1/4
1 h∗2, t̂ = λ

−3/4
1 t∗ and x̂ = λ

−1/4
1 x∗. This yields the governing equations

∂h∗

∂t∗
=

∂

∂x∗

(
h∗
∂h∗

∂x∗

)
− h∗

h∗2
− 1 and

∂h∗2
∂t∗

= λ∗
h∗

h∗2
+ λ∗, (4.1)

where λ∗ = λ2/λ1 = W/W1 (or in a porous system, λ∗ = φ/φ1). We first consider the
behaviour of the system for λ∗ = 1, and then examine the variation of the results with
λ∗. (Recall that values of λ∗ 6 1 are physically meaningful only for the analagous
system of flow through a porous medium, in which the porosity and permeability are
independent quantities which depend on the microstructure of the porous matrix.)

Numerical integrations were carried out for various values of λ∗ between 0.2 and
20. A consistent balance for t∗ � 1 can be achieved if h∗ tends to the similarity
solution (2.21), so h∗ ∼ t∗−1/3, and h∗2 ∼ t∗1/3; hence h∗2 → 0 as t∗ → 0. However,
it was more convenient to take an initial condition in which h∗(x∗, t∗0) was given
by the similarity solution (2.21) at t∗ = t∗0, and to set h∗2(x∗, t∗0) = h∗20 ≈ 0.001 to
prevent numerical instability during the first few timesteps. The initial time t∗0 was
typically 0.01, and the numerical results were not sensitive to the values of either t∗0
or h∗20.
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Figure 5. Length L∗(t∗) of currents for λ∗ = 0.2 to 20.0 (—) and
analytical solution for v∗ = −1 (- -).

4.1. Results for λ∗ = 1

The evolution of the current for λ∗ = 1 is illustrated in figure 4. The current in the
upper layer behaves in a manner similar to the solution (3.2) for drainage through a
thin layer: it advances to a maximum length and then retreats, draining out completely
in a finite time. The profile of the upper current varies slightly in time, and is slightly
more convex than the parabolic profile h∗ = h∗(0, t∗)(1− ζ∗2).

In the lower layer, only the region 0 6 x∗ 6 L∗(t∗) is represented in our numerics:
after the current has started to retreat, the fluid ahead of the nose of the current in
the upper layer continues to drain through the lower layer at a steady rate v∗ = −1,
but no longer affects the dynamics in the upper layer.

The plots of the length and volume of the current are also qualitatively similar
to those found for the current draining through a thin layer, and are omitted here
for brevity. Drainage becomes increasingly dominant as the current evolves, and it is
apparent that even by the time t∗max at which the current reaches its maximum extent,
the majority of the dense fluid lies in the crack and drains out of it at an almost
constant rate mostly driven by its own weight.

4.2. Variation of the results with λ∗

We also investigate the behaviour of the current for λ∗ 6= 1. Qualitatively it is very
similar to that of the current with λ∗ = 1, except that the rate at which the lower
layer becomes deeper varies. The slight deviation from the parabolic profile is most
marked for small λ∗, and least marked for large λ∗. Figure 5 compares L∗(t∗) for
currents with λ∗ between 0.2 and 20.

As λ∗ increases, the lower current becomes deeper more rapidly because of the
decreased porosity of the lower layer. However, this does not correspond to a greater
rate of mass loss from the upper current; in fact, since the pressure gradient across
the lower current is smaller, the drainage rate from the upper current is reduced, and
the current travels further and takes longer to drain out completely. As λ∗ → ∞, the
ratio h∗/h∗2 becomes negligible very rapidly; the drainage is almost entirely dominated
by the constant term driven by fluid weight, and the behaviour of the current tends
to the solution derived by Pritchard et al. (2001) for drainage driven by background
flow, v∗ = −1. In this limit, the run-out length L∗max approaches 23/43−1/4, and the
drainage time t∗end approaches 23/43−1/2.
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5. Summary and conclusions
Motivated by the problem of slurry injection into a fracture in a gas reservoir, we

have developed a model for the flow of viscous fluid in a narrow vertical fracture,
which then drains through a crack at its base. When the crack is much shallower
than the current, it saturates immediately, and we are able to obtain an exact solution
for the flow. When the crack is deeper, the evolution of the saturated region must be
taken into account, although the overall behaviour of the current resembles that for
drainage through a shallow crack. We have characterized the variation of the run-out
length and drainage time with the relative widths of the crack and fracture.

An important point illustrated by these results is that the simplified drainage term
employed by Pritchard et al. (2001) overpredicts the run-out length for a viscous fluid
propagating either in a fracture or through a porous medium. This occurs because the
drainage term used in the previous study is asymptotically valid only for small times,
when the current is deep compared to the crack. However, the previous solutions pro-
vide an upper bound for the run-out length, as well as an estimate of the maximum
time taken for the fluid to drain out altogether. These results have immediate applica-
tions in determining how far into a ‘leaky’ fracture a proppant slurry may be injected.

A natural development of the model developed here would be to consider the
propagation of the current when the rheology is non-Newtonian (as is typical of most
muds and slurries). A framework for these problems has recently been developed
by King (2000), who obtained solutions for non-draining flows with power-law and
Bingham rheologies.

The authors acknowledge financial support from EPSRC and HR Wallingford Ltd.
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